Wearable Biosensors and AI Analytics for Continuous Health Monitoring and Early Disease Detection
DOI:
https://doi.org/10.59675/E225Keywords:
Wearable biosensors; Flexible electronics; Nanomaterials; Graphene-based sensors; Continuous health monitoring.Abstract
The advent of wearable biosensor technologies is a paradigm shift in healthcare provision, as this technology allows continuous physiological monitoring beyond the scope of routine clinical practice, and allows the development of disease conditions through real time analysis of the data. This paper looks at how flexible electronics, advanced nanomaterials, and artificial intelligence analytics can work together to create holistic health monitoring systems that can identify the slightest physiological variations that signify the development of pathological conditions. It has been a multi-stage study that included development of flexible sensor arrays using graphene-based nanomaterials and conducting polymers, application of machine learning algorithms to real-time (physiological) signal processing, and biosensor systems integrated with telemedicine platforms to manage patients remotely. The study proves that fabricated flexible biosensor arrays of screen-printed polyimide substrate can be used with mechanical flexibility greater than 10,000 bending cycles without losing electrochemical functionality within 5 percent of their initial performance. A set of nanomaterial-based electrodes with reduced graphene oxide showed the sensitivity enhancement of 340 percent relative to the usual metallic electrodes in detecting biomarkers in physiological fluids. The accuracy of disease state classification of machine learning models trained on continuous data through biosensors was 91.7% of cardiovascular anomalies and 87.3% of metabolic dysfunction, with an average of 72 hours ago before clinical symptoms appear. It was integrated with telemedicine systems which allowed real-time data transfer, automatic triggering of alerts in case of abnormal physiological behavior, and remote physician consultation leading to after-effects of 43% less emergency department visits in monitored patients. The economic analysis shows that a sustained monitoring by the use of wearable biosensors would save healthcare expenditures by about 2840 per patient every year based on early detection, low hospitalization, and better medication therapies. Implementation is however characterized by very serious challenges such as regulatory compliance requirements with reference to certification of medical devices, data security issues pertaining to the constant delivery of sensitive health information, patient acceptance issues, and technical constraint to multi-analyte ability of sensing. The results show that wearable biosensor systems in combination with artificial intelligence analytics could be a valid direction towards personalized, proactive healthcare provision, but their successful implementation should pay close attention to regulatory frameworks, cybersecurity efforts, and clinical validation guidelines to ensure patient safety and data quality.
References
World Health Organization. Ageing and health. Geneva: WHO; 2022.
Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health. Sci Transl Med. 2015;7(283):283rv3. DOI: https://doi.org/10.1126/scitranslmed.aaa3487
Bansal A, Kumar S, Bajpai A, Tiwari VN, Nayak M, Venkatesan S, et al. Remote health monitoring system for detecting cardiac disorders. IET Syst Biol. 2015;9(6):309-314. DOI: https://doi.org/10.1049/iet-syb.2015.0012
Dias D, Paulo Silva Cunha J. Wearable health devices: vital sign monitoring, systems and technologies. Sensors. 2018;18(8):2414. DOI: https://doi.org/10.3390/s18082414
Kim J, Campbell AS, de Ávila BE, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol. 2019;37(4):389-406. DOI: https://doi.org/10.1038/s41587-019-0045-y
Grand View Research. Wearable medical devices market size, share and trends analysis report. San Francisco: Grand View Research; 2023.
Gao W, Emaminejad S, Nyein HY, Challa S, Chen K, Peck A, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature. 2016;529(7587):509-514. DOI: https://doi.org/10.1038/nature16521
Kim DH, Lu N, Ma R, Kim YS, Kim RH, Wang S, et al. Epidermal electronics. Science. 2011;333(6044):838-843. DOI: https://doi.org/10.1126/science.1206157
Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev. 2019;48(6):1465-1491. DOI: https://doi.org/10.1039/C7CS00730B
Torrente-Rodríguez RM, Lukas H, Tu J, Min J, Yang Y, Xu C, et al. SARS-CoV-2 RapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter. 2020;3(6):1981-1998. DOI: https://doi.org/10.1016/j.matt.2020.09.027
Jeong JW, Yeo WH, Akhtar A, Norton JJ, Kwack YJ, Li S, et al. Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv Mater. 2013;25(47):6839-6846. DOI: https://doi.org/10.1002/adma.201301921
Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-1358. DOI: https://doi.org/10.1056/NEJMra1814259
Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236-1246. DOI: https://doi.org/10.1093/bib/bbx044
Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25(1):65-69. DOI: https://doi.org/10.1038/s41591-018-0268-3
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. DOI: https://doi.org/10.1038/s41591-018-0300-7
Bashshur RL, Shannon GW, Smith BR, Woodward MA. The empirical foundations of telemedicine interventions for chronic disease management. Telemed J E Health. 2014;20(9):769-800. DOI: https://doi.org/10.1089/tmj.2014.9981
Dorsey ER, Topol EJ. State of telehealth. N Engl J Med. 2016;375(2):154-161. DOI: https://doi.org/10.1056/NEJMra1601705
Chow CK, Redfern J, Hillis GS, Thakkar J, Santo K, Hackett ML, et al. Effect of lifestyle-focused text messaging on risk factor modification in patients with coronary heart disease: a randomized clinical trial. JAMA. 2015;314(12):1255-1263. DOI: https://doi.org/10.1001/jama.2015.10945
Dunn J, Runge R, Snyder M. Wearables and the medical revolution. Per Med. 2018;15(5):429-448. DOI: https://doi.org/10.2217/pme-2018-0044
U.S. Food and Drug Administration. Digital health innovation action plan. Silver Spring: FDA; 2017.
Cilliers L. Wearable devices in healthcare: privacy and information security issues. Health Inf Manag J. 2020;49(2-3):150-156. DOI: https://doi.org/10.1177/1833358319851684
Sempionatto JR, Nakagawa T, Pavinatto A, Mensah ST, Imani S, Mercier P, et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip. 2017;17(10):1834-1842. DOI: https://doi.org/10.1039/C7LC00192D
Bandodkar AJ, Jeerapan I, Wang J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 2016;1(5):464-482. DOI: https://doi.org/10.1021/acssensors.6b00250
Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater. 2016;28(22):4338-4372. DOI: https://doi.org/10.1002/adma.201504244
Khan Y, Ostfeld AE, Lochner CM, Pierre A, Arias AC. Monitoring of vital signs with flexible and wearable medical devices. Adv Mater. 2016;28(22):4373-4395. DOI: https://doi.org/10.1002/adma.201504366
Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip. 2018;18(2):217-248. DOI: https://doi.org/10.1039/C7LC00914C
Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327(5973):1603-1607. DOI: https://doi.org/10.1126/science.1182383
Pumera M, Ambrosi A, Bonanni A, Chng EL, Poh HL. Graphene for electrochemical sensing and biosensing. Trends Anal Chem. 2010;29(9):954-965. DOI: https://doi.org/10.1016/j.trac.2010.05.011
Heinze J, Frontana-Uribe BA, Ludwigs S. Electrochemistry of conducting polymers: persistent models and new concepts. Chem Rev. 2010;110(8):4724-4771. DOI: https://doi.org/10.1021/cr900226k
Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293-346. DOI: https://doi.org/10.1021/cr030698+
Bard AJ, Faulkner LR. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley; 2001.
Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21. DOI: https://doi.org/10.1186/1743-0003-9-21
Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28(3):R1-39. DOI: https://doi.org/10.1088/0967-3334/28/3/R01
Tamura T, Maeda Y, Sekine M, Yoshida M. Wearable photoplethysmographic sensors: past and present. Electronics. 2014;3(2):282-302. DOI: https://doi.org/10.3390/electronics3020282
Heikenfeld J, Jajack A, Feldman B, Granger SW, Gaitonde S, Begtrup G, et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat Biotechnol. 2019;37(4):407-419. DOI: https://doi.org/10.1038/s41587-019-0040-3
Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031-1051. DOI: https://doi.org/10.1007/s11517-006-0119-0
Lee J, Kim M, Park HK, Kim IY. Motion artifact reduction in wearable photoplethysmography based on multi-channel sensors with multiple wavelengths. Sensors. 2020;20(5):1493. DOI: https://doi.org/10.3390/s20051493
Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13-17; San Francisco, CA. New York: ACM; 2016. p. 785-794. DOI: https://doi.org/10.1145/2939672.2939785
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-1780. DOI: https://doi.org/10.1162/neco.1997.9.8.1735
Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13:281-305.
Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, et al. Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: Proceedings of the 2008 IEEE Symposium on Security and Privacy; 2008 May 18-21; Oakland, CA. Piscataway: IEEE; 2008. p. 129-142. DOI: https://doi.org/10.1109/SP.2008.31
Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, et al. A view of cloud computing. Commun ACM. 2010;53(4):50-58. DOI: https://doi.org/10.1145/1721654.1721672
Noah B, Keller MS, Mosadeghi S, Stein L, Johl S, Delshad S, et al. Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. NPJ Digit Med. 2018;1:20172. DOI: https://doi.org/10.1038/s41746-017-0002-4
Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit Med. 2020;3:18. DOI: https://doi.org/10.1038/s41746-020-0226-6
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307-310. DOI: https://doi.org/10.1016/S0140-6736(86)90837-8
Someya T, Bao Z, Malliaras GG. The rise of plastic bioelectronics. Nature. 2016;540(7633):379-385. DOI: https://doi.org/10.1038/nature21004
Webb RC, Bonifas AP, Behnaz A, Zhang Y, Yu KJ, Cheng H, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater. 2013;12(10):938-944. DOI: https://doi.org/10.1038/nmat3755
Imani S, Bandodkar AJ, Mohan AM, Kumar R, Yu S, Wang J, et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat Commun. 2016;7:11650. DOI: https://doi.org/10.1038/ncomms11650
Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: a review. Electroanalysis. 2010;22(10):1027-1036. DOI: https://doi.org/10.1002/elan.200900571
Labroo P, Cui Y. Flexible graphene bio-nanosensor for lactate. Biosens Bioelectron. 2013;41:852-856. DOI: https://doi.org/10.1016/j.bios.2012.08.024
Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, et al. Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv. 2017;3(3):e1601314. DOI: https://doi.org/10.1126/sciadv.1601314
Chi YM, Jung TP, Cauwenberghs G. Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev Biomed Eng. 2010;3:106-119. DOI: https://doi.org/10.1109/RBME.2010.2084078
Castaneda D, Esparza A, Ghamari M, Soltanpur C, Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron. 2018;4(4):195-202. DOI: https://doi.org/10.15406/ijbsbe.2018.04.00125
Buller MJ, Tharion WJ, Cheuvront SN, Montain SJ, Kenefick RW, Castellani J, et al. Estimation of human core temperature from sequential heart rate observations. Physiol Meas. 2013;34(7):781-798. DOI: https://doi.org/10.1088/0967-3334/34/7/781
Koh A, Kang D, Xue Y, Lee S, Pielak RM, Kim J, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med. 2016;8(366):366ra165. DOI: https://doi.org/10.1126/scitranslmed.aaf2593
Bumgarner JM, Lambert CT, Hussein AA, Cantillon DJ, Baranowski B, Wolski K, et al. Smartwatch algorithm for automated detection of atrial fibrillation. J Am Coll Cardiol. 2018;71(21):2381-2388. DOI: https://doi.org/10.1016/j.jacc.2018.03.003
Acharya UR, Fujita H, Lih OS, Hagiwara Y, Tan JH, Adam M. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci. 2017;405:81-90. DOI: https://doi.org/10.1016/j.ins.2017.04.012
Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol Ther. 2016;18(S2):S2-3-S2-13. DOI: https://doi.org/10.1089/dia.2015.0417
Shah SA, Velardo C, Farmer A, Tarassenko L. Exacerbations in chronic obstructive pulmonary disease: identification and prediction using a digital health system. J Med Internet Res. 2017;19(3):e69. DOI: https://doi.org/10.2196/jmir.7207
Turakhia MP, Desai M, Hedlin H, Rajmane A, Talati N, Ferris T, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: the Apple Heart Study. Am Heart J. 2019;207:66-75. DOI: https://doi.org/10.1016/j.ahj.2018.09.002
Ong MK, Romano PS, Edgington S, Aronow HU, Auerbach AD, Black JT, et al. Effectiveness of remote patient monitoring after discharge of hospitalized patients with heart failure: the Better Effectiveness After Transition–Heart Failure (BEAT-HF) randomized clinical trial. JAMA Intern Med. 2016;176(3):310-318. DOI: https://doi.org/10.1001/jamainternmed.2015.7712
Beck RW, Riddlesworth T, Ruedy K, Ahmann A, Bergenstal R, Haller S, et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA. 2017;317(4):371-378. DOI: https://doi.org/10.1001/jama.2016.19975
Steventon A, Bardsley M, Billings J, Dixon J, Doll H, Hirani S, et al. Effect of telehealth on use of secondary care and mortality: findings from the Whole System Demonstrator cluster randomised trial. BMJ. 2012;344:e3874. DOI: https://doi.org/10.1136/bmj.e3874
Piwek L, Ellis DA, Andrews S, Joinson A. The rise of consumer health wearables: promises and barriers. PLoS Med. 2016;13(2):e1001953. DOI: https://doi.org/10.1371/journal.pmed.1001953
Ancker JS, Edwards A, Nosal S, Hauser D, Mauer E, Kaushal R. Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision support system. BMC Med Inform Decis Mak. 2017;17(1):36. DOI: https://doi.org/10.1186/s12911-017-0430-8
Dowding D, Randell R, Gardner P, Fitzpatrick G, Dykes P, Favela J, et al. Dashboards for improving patient care: review of the literature. Int J Med Inform. 2015;84(2):87-100. DOI: https://doi.org/10.1016/j.ijmedinf.2014.10.001
Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artif Intell Healthc. 2020:295-336. DOI: https://doi.org/10.1016/B978-0-12-818438-7.00012-5
Ribeiro MT, Singh S, Guestrin C. Why should I trust you? Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13-17; San Francisco, CA. New York: ACM; 2016. p. 1135-1144. DOI: https://doi.org/10.1145/2939672.2939778
Hathaliya JJ, Tanwar S. An exhaustive survey on security and privacy issues in Healthcare 4.0. Comput Commun. 2020;153:311-335. DOI: https://doi.org/10.1016/j.comcom.2020.02.018
Zhang R, Liu L. Security models and requirements for healthcare application clouds. In: Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing; 2010 Jul 5-10; Miami, FL. Piscataway: IEEE; 2010. p. 268-275. DOI: https://doi.org/10.1109/CLOUD.2010.62
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Academic International Journal of Engineering Science

This work is licensed under a Creative Commons Attribution 4.0 International License.


