Machine Learning–Based Predictive Maintenance in Industrial Robotics
DOI:
https://doi.org/10.59675/E123Keywords:
Predictive maintenance, Machine learning, Industrial robotics, Industry 4.0, Deep learning, Remaining useful life, Condition monitoringAbstract
The fast development of the industry 4.0 technologies is radically changing the operations and maintenance approaches of manufacturing activities in the global arena. Machine learning predictive maintenance is a paradigm shift of the old reactive and preventive methods which allow real time fault detection and predictions of the remaining useful life in industrial robots. In this paper, the technical framework and operation models of predictive maintenance in robotic systems by integrating machine learning algorithms with sensor networks and Industrial Internet of Things infrastructure are analyzed along with their implications. It is a critical analysis of different methodologies such as supervised learning, unsupervised learning, and deep learning approaches, and it discusses implementation issues involving the data quality, model interpretability, and system integration. The paper also assesses the regulatory factors and cybersecurity systems needed to deploy in industries. Using automotive, electronic, and aerospace manufacturing case studies, this study shows that predictive maintenance with the help of ML can reduce unexpected downtimes by up to 40 percent and increase the life of components. It is concluded in the paper that machine learning-driven predictive maintenance systems are revolutionary systems to provide efficient, reliable, and cost-effective industrial operations in the smart manufacturing era.
References
Carvalho TP, Soares FA, Vita R, Francisco RP, Basto JP, Alcalá SG. A systematic literature review of machine learning methods applied to predictive maintenance. Comput Ind Eng. 2019; 137:106024. DOI: https://doi.org/10.1016/j.cie.2019.106024
Lei Y, Yang B, Jiang X, Jia F, Li N, Nandi AK. Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech Syst Signal Process. 2020; 138:106587. DOI: https://doi.org/10.1016/j.ymssp.2019.106587
Xu LD, Xu EL, Li L. Industry 4.0: state of the art and future trends. Int J Prod Res. 2018;56(8):2941–2962. DOI: https://doi.org/10.1080/00207543.2018.1444806
Jardine AK, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process. 2006;20(7):1483–1510. DOI: https://doi.org/10.1016/j.ymssp.2005.09.012
Khan S, Yairi T. A review on the application of deep learning in system health management. Mech Syst Signal Process. 2018; 107:241–265. DOI: https://doi.org/10.1016/j.ymssp.2017.11.024
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. DOI: https://doi.org/10.1038/nature14539
Si XS, Wang W, Hu CH, Zhou DH. Remaining useful life estimation: a review on the statistical data-driven approaches. Eur J Oper Res. 2011;213(1):1–14. DOI: https://doi.org/10.1016/j.ejor.2010.11.018
Zhao R, Wang D, Yan R, Mao K, Shen F, Wang J. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Trans Ind Electron. 2018;65(2):1539–1548. DOI: https://doi.org/10.1109/TIE.2017.2733438
Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019; 378:686–707. DOI: https://doi.org/10.1016/j.jcp.2018.10.045
Widodo A, Yang BS. Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process. 2007;21(6):2560–2574. DOI: https://doi.org/10.1016/j.ymssp.2006.12.007
Lee J, Wu F, Zhao W, Ghaffari M, Liao L, Siegel D. Prognostics and health management design for rotary machinery systems—reviews, methodology and applications. Mech Syst Signal Process. 2014;42(1–2):314–334. DOI: https://doi.org/10.1016/j.ymssp.2013.06.004
Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv. 2009;41(3):1–58. DOI: https://doi.org/10.1145/1541880.1541882
Liu FT, Ting KM, Zhou ZH. Isolation forest. In: Proceedings of the 8th IEEE International Conference on Data Mining; 2008. p. 413–422. DOI: https://doi.org/10.1109/ICDM.2008.17
Nguyen KTP, Medjaher K. A new dynamic predictive maintenance framework using deep learning for failure prognostics. Reliab Eng Syst Saf. 2019; 188:251–262. DOI: https://doi.org/10.1016/j.ress.2019.03.018
Randall RB, Antoni J. Rolling element bearing diagnostics: a tutorial. Mech Syst Signal Process. 2011;25(2):485–520. DOI: https://doi.org/10.1016/j.ymssp.2010.07.017
Tao F, Qi Q, Wang L, Nee AYC. Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering. 2019;5(4):653–661. DOI: https://doi.org/10.1016/j.eng.2019.01.014
Sikorska JZ, Hodkiewicz M, Ma L. Prognostic modelling options for remaining useful life estimation by industry. Mech Syst Signal Process. 2011;25(5):1803–1836. DOI: https://doi.org/10.1016/j.ymssp.2010.11.018
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003; 3:1157–1182.
Ahmad R, Kamaruddin S. An overview of time-based and condition-based maintenance in industrial application. Comput Ind Eng. 2012;63(1):135–149. DOI: https://doi.org/10.1016/j.cie.2012.02.002
Siciliano B, Khatib O, editors. Springer Handbook of Robotics. 2nd ed. Berlin: Springer; 2016. DOI: https://doi.org/10.1007/978-3-319-32552-1
Dhillon BS. Robot Reliability and Safety. New York: Springer-Verlag; 1991. DOI: https://doi.org/10.1007/978-1-4612-3148-6
He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21(9):1263–1284. DOI: https://doi.org/10.1109/TKDE.2008.239
Adadi A, Berrada M. Peeking inside the black box: a survey on explainable artificial intelligence. IEEE Access. 2018; 6:52138–52160. DOI: https://doi.org/10.1109/ACCESS.2018.2870052
Mourtzis D, Vlachou E, Milas N. Industrial big data as a result of IoT adoption in manufacturing. Procedia CIRP. 2016; 55:290–295. DOI: https://doi.org/10.1016/j.procir.2016.07.038
Susto GA, Schirru A, Pampuri S, McLoone S, Beghi A. Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans Ind Inform. 2015;11(3):812–820. DOI: https://doi.org/10.1109/TII.2014.2349359
Dalzochio J, Kunst R, Pignaton E, Binotto A, Sanyal S, Favilla J, et al. Machine learning and reasoning for predictive maintenance in Industry 4.0: current status and challenges. Comput Ind. 2020; 123:103298. DOI: https://doi.org/10.1016/j.compind.2020.103298
Grieves M, Vickers J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen FJ, Flumerfelt S, Alves A, editors. Transdisciplinary Perspectives on Complex Systems. Cham: Springer; 2017. p. 85–113. DOI: https://doi.org/10.1007/978-3-319-38756-7_4
Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22(10):1345–1359. DOI: https://doi.org/10.1109/TKDE.2009.191
Randall RB. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications. Chichester: John Wiley & Sons; 2011. DOI: https://doi.org/10.1002/9780470977668
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Academic International Journal of Engineering Science

This work is licensed under a Creative Commons Attribution 4.0 International License.


