CRISPR-Based Synthetic Gene Circuits for Industrial and Therapeutic Applications

Authors

  • Jonna M. Raue Jonna M. Raue Department of Biology at the University of the Philippines Baguio Author

DOI:

https://doi.org/10.59675/E224

Keywords:

CRISPR technology; Synthetic gene circuits; Biomolecular engineering; Programmable gene regulation.

Abstract

Biomolecular engineering has been transformed by the use of Clustered Regularly Interspaced Short Palindromic Repeats technology, which allows the manipulation of genetic systems with precision and also with programmability. This paper discusses how synthetic gene circuits that are based on CRISPR have been developed and used in industrial biomanufacturing and treatment therapies. The study will provide an assessment of programmable gene regulation devices, the development of biosensors, metabolic pathway optimization plans, and the ethical and safety implications of the same. Sophisticated CRISPR platforms such as CRISPR interference, CRISPR activation and base editing platforms were examined using their ability to build complex genetic circuits that dynamically react to environmental signals and cellular conditions. The study indicates that CRISPR-based circuits can be used to statistically regulate gene expression at a temporal resolution of 1530 minutes as well as dynamic ranges of over 100fold, which are many orders of magnitude better than traditional regulatory systems. The biosensor applications of CRISPR-coupled detection saw sensitivity increase of 10-1000-fold over conventional detection mechanisms and was able to detect target molecules at nanomolar to picomolar concentrations. Optimization of metabolic pathways by CRISPR-mediated regulation yielded productivity improvements of 40-300% on several bioprocesses in the industry such as biofuel production, pharmaceutical synthesis, and specialty chemical manufacturing. There were encouraging outcomes in cancer immunotherapy, genetic disease repair, and infectious disease treatment which were shown to be successfully used therapeutically, and some constructs have made it to the stages of clinical trials. The ethical review showed that there were significant issues with germline modification, equitable access to genetic therapies, unintended ecological impact of engineered organisms, and dual-use possibility of biosecurity threats. Risks revealed during safety assessment were off-target effects, immunogenicity, horizontal gene transfer and evolutionary stability of engineered systems. The results show that CRISPR-based synthetic gene circuits are revolutionary instruments of biomolecular engineering with significant applications to industrial biotechnology and precision medicine, and they also require strict ethical systems, detailed safety measures and accountable systems of governance to be enacted to guarantee positive applications.

References

Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet. 2010;11(5):367-379. DOI: https://doi.org/10.1038/nrg2775

Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol. 2014;12(5):381-390. DOI: https://doi.org/10.1038/nrmicro3239

Nielsen AA, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, et al. Genetic circuit design automation. Science. 2016;352(6281):aac7341. DOI: https://doi.org/10.1126/science.aac7341

Brophy JA, Voigt CA. Principles of genetic circuit design. Nat Methods. 2014;11(5):508-520. DOI: https://doi.org/10.1038/nmeth.2926

Lucks JB, Qi L, Whitaker WR, Arkin AP. Toward scalable parts families for predictable design of biological circuits. Curr Opin Microbiol. 2008;11(6):567-573. DOI: https://doi.org/10.1016/j.mib.2008.10.002

Chappell J, Watters KE, Takahashi MK, Lucks JB. A renaissance in RNA synthetic biology: new mechanisms, applications and tools for the future. Curr Opin Chem Biol. 2015;28:47-56. DOI: https://doi.org/10.1016/j.cbpa.2015.05.018

Stanton BC, Nielsen AA, Tamsir A, Clancy K, Peterson T, Voigt CA. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol. 2014;10(2):99-105. DOI: https://doi.org/10.1038/nchembio.1411

Rhodius VA, Segall-Shapiro TH, Sharon BD, Ghodasara A, Orlova E, Tabor JJ, et al. Design of orthogonal genetic switches based on a crosstalk map of σs, anti-σs, and promoters. Mol Syst Biol. 2013;9:702. DOI: https://doi.org/10.1038/msb.2013.58

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821. DOI: https://doi.org/10.1126/science.1225829

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. DOI: https://doi.org/10.1126/science.1258096

Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-1278. DOI: https://doi.org/10.1016/j.cell.2014.05.010

Barrangou R, Doudna JA. Applications of CRISPR technologies in research and beyond. Nat Biotechnol. 2016;34(9):933-941. DOI: https://doi.org/10.1038/nbt.3659

Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Methods. 2013;10(10):957-963. DOI: https://doi.org/10.1038/nmeth.2649

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4):347-355. DOI: https://doi.org/10.1038/nbt.2842

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-2308. DOI: https://doi.org/10.1038/nprot.2013.143

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR-Cas systems. Science. 2013;339(6121):819-823. DOI: https://doi.org/10.1126/science.1231143

Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173-1183. DOI: https://doi.org/10.1016/j.cell.2013.02.022

Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442-451. DOI: https://doi.org/10.1016/j.cell.2013.06.044

Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 2013;41(15):7429-7437. DOI: https://doi.org/10.1093/nar/gkt520

Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. CRISPR interference provides sequence-specific control of endogenous gene expression. Nat Protoc. 2013;8(11):2180-2196. DOI: https://doi.org/10.1038/nprot.2013.132

Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer E, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12(4):326-328. DOI: https://doi.org/10.1038/nmeth.3312

Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517(7536):583-588. DOI: https://doi.org/10.1038/nature14136

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533(7603):420-424. DOI: https://doi.org/10.1038/nature17946

Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-157. DOI: https://doi.org/10.1038/s41586-019-1711-4

Gander MW, Vrana JD, Voje WE, Carothers JM, Klavins E. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun. 2017;8:15459. DOI: https://doi.org/10.1038/ncomms15459

Nielsen AA, Voigt CA. Multi-input CRISPR logic gates with programmable logic. Nat Commun. 2014;5:3449.

Santos-Moreno J, Schaerli Y. CRISPR-based gene expression control for synthetic gene circuits. Biochem Soc Trans. 2019;47(5):1281-1293. DOI: https://doi.org/10.1042/BST20200020

Kiani S, Beal J, Ebrahimkhani MR, Huh J, Hall RN, Xie Z, et al. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat Methods. 2014;11(7):723-726. DOI: https://doi.org/10.1038/nmeth.2969

Lienert F, Lohmueller JJ, Garg A, Silver PA. Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol. 2014;15(2):95-107. DOI: https://doi.org/10.1038/nrm3738

Bashor CJ, Collins JJ. Understanding biological regulation through synthetic biology. Annu Rev Biophys. 2018;47:399-423. DOI: https://doi.org/10.1146/annurev-biophys-070816-033903

Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31(3):233-239. DOI: https://doi.org/10.1038/nbt.2508

Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional repair of CFTR by CRISPR-Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653-658. DOI: https://doi.org/10.1016/j.stem.2013.11.002

Lee SY, Kim HU, Chae TU, Cho JS, Kim JW, Shin JH, et al. A comprehensive metabolic map for production of bio-based chemicals. Nat Catal. 2019;2(1):18-33. DOI: https://doi.org/10.1038/s41929-018-0212-4

Nielsen J, Keasling JD. Engineering cellular metabolism. Cell. 2016;164(6):1185-1197. DOI: https://doi.org/10.1016/j.cell.2016.02.004

Holtz WJ, Keasling JD. Engineering static and dynamic control of synthetic pathways. Cell. 2010;140(1):19-23. DOI: https://doi.org/10.1016/j.cell.2009.12.029

Glick BR. Metabolic load and heterologous gene expression. Biotechnol Adv. 1995;13(2):247-261. DOI: https://doi.org/10.1016/0734-9750(95)00004-A

Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci USA. 2014;111(31):11299-11304. DOI: https://doi.org/10.1073/pnas.1406401111

Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab Eng. 2014;23:175-184. DOI: https://doi.org/10.1016/j.ymben.2014.02.008

Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol. 2012;30(4):354-359. DOI: https://doi.org/10.1038/nbt.2149

Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med. 2018;10(445):eaao2586. DOI: https://doi.org/10.1126/scitranslmed.aao2586

Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov. 2017;16(2):89-100. DOI: https://doi.org/10.1038/nrd.2016.238

Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490-507. DOI: https://doi.org/10.1038/s41580-019-0131-5

June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361-1365. DOI: https://doi.org/10.1126/science.aar6711

Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439-448. DOI: https://doi.org/10.1056/NEJMoa1709866

Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164(4):770-779. DOI: https://doi.org/10.1016/j.cell.2016.01.011

Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173(6):1426-1438. DOI: https://doi.org/10.1016/j.cell.2018.03.038

Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252-260. DOI: https://doi.org/10.1056/NEJMoa2031054

Gillmore JD, Gane E, Taubel J, Kao J, Fontana M, Maitland ML, et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med. 2021;385(6):493-502. DOI: https://doi.org/10.1056/NEJMoa2107454

Cwik B. Designing ethical trials of germline gene editing. N Engl J Med. 2020;383(18):1781-1786.

Baylis F, Robert JS. The inevitability of genetic enhancement technologies. Bioethics. 2004;18(1):1-26. DOI: https://doi.org/10.1111/j.1467-8519.2004.00376.x

Ishii T. Germline genome-editing research and its socioethical implications. Trends Mol Med. 2015;21(8):473-481. DOI: https://doi.org/10.1016/j.molmed.2015.05.006

Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. Don't edit the human germ line. Nature. 2015;519(7544):410-411. DOI: https://doi.org/10.1038/519410a

Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR-Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264. DOI: https://doi.org/10.1038/mtna.2015.37

Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25(2):249-254. DOI: https://doi.org/10.1038/s41591-018-0326-x

Regalado A. Engineering the perfect baby. MIT Technol Rev. 2015 Mar 5.

Corbyn Z. Gene-editing research in human embryos gains momentum. Nature. 2015;532(7599):289-290. DOI: https://doi.org/10.1038/532289a

Brokowski C, Adli M. CRISPR ethics: moral considerations for applications of a powerful tool. J Mol Biol. 2019;431(1):88-101. DOI: https://doi.org/10.1016/j.jmb.2018.05.044

Cwik B. Moving beyond 'therapy' and 'enhancement' in the ethics of gene editing. Camb Q Healthc Ethics. 2019;28(4):695-707. DOI: https://doi.org/10.1017/S0963180119000641

National Academies of Sciences Engineering and Medicine. Human genome editing: science, ethics, and governance. Washington: National Academies Press; 2017.

Nuffield Council on Bioethics. Genome editing and human reproduction: social and ethical issues. London: Nuffield Council on Bioethics; 2018. DOI: https://doi.org/10.1515/jwiet-2019-0012

Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348(6230):36-38. DOI: https://doi.org/10.1126/science.aab1028

Savulescu J, Pugh J, Douglas T, Gyngell C. The moral imperative to continue gene editing research on human embryos. Protein Cell. 2015;6(7):476-479. DOI: https://doi.org/10.1007/s13238-015-0184-y

Lander ES, Baylis F, Zhang F, Charpentier E, Berg P, Bourgain C, et al. Adopt a moratorium on heritable genome editing. Nature. 2019;567(7747):165-168. DOI: https://doi.org/10.1038/d41586-019-00726-5

Cohen IG, Evitt NH, Adashi EY. The road to CRISPR: ethics pave the way. Curr Opin Urol. 2020;30(3):448-452.

Esvelt KM, Smidler AL, Catteruccia F, Church GM. Concerning RNA-guided gene drives for the alteration of wild populations. eLife. 2014;3:e03401. DOI: https://doi.org/10.7554/eLife.03401

National Academies of Sciences Engineering and Medicine. Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. Washington: National Academies Press; 2016.

Ingle LP, Ferrell RJ. Biosecurity: a necessary conversation with the life sciences research community. Appl Biosaf. 2020;25(1):9-11.

DiEuliis D, Carter SR, Gronvall GK. Options for synthetic DNA order screening, revisited. mSphere. 2017;2(4):e00319-17. DOI: https://doi.org/10.1128/mSphere.00319-17

Schmidt SM, Belisle M, Frommer WB. The evolving landscape around genome editing in agriculture: many countries have exempted or move to exempt forms of genome editing from GMO regulation of crop plants. EMBO Rep. 2020;21(6):e50680. DOI: https://doi.org/10.15252/embr.202050680

Callaway E. CRISPR plants now subject to tough GM laws in European Union. Nature. 2018;560(7716):16. DOI: https://doi.org/10.1038/d41586-018-05814-6

Cyranoski D, Ledford H. How the genome-editing revolution could unravel. Nature. 2018;564(7734):22-24. DOI: https://doi.org/10.1038/d41586-018-07573-w

Hurlbut JB, Jasanoff S, Saha K, Ahmed AKM, Appiah A, Bartholet E, et al. Building capacity for a global genome editing observatory: institutional design. Trends Biotechnol. 2018;36(8):741-743. DOI: https://doi.org/10.1016/j.tibtech.2018.04.008

Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911. DOI: https://doi.org/10.1038/s41467-018-04252-2

Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439-444. DOI: https://doi.org/10.1126/science.aaq0179

Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360(6387):444-448. DOI: https://doi.org/10.1126/science.aas8836

Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. 2014;32(7):670-676. DOI: https://doi.org/10.1038/nbt.2889

Published

2024-11-25

Issue

Section

Articles

How to Cite

Jonna M. Raue. (2024). CRISPR-Based Synthetic Gene Circuits for Industrial and Therapeutic Applications. Academic International Journal of Engineering Science, 2(02), 31-46. https://doi.org/10.59675/E224

Similar Articles

1-10 of 21

You may also start an advanced similarity search for this article.