Advances and Limitations of Level Set Methods for Modeling the Freshwater–Saltwater Interface in Coastal Aquifers: Insights from the Henry Problem
DOI:
https://doi.org/10.59675/E113Keywords:
saltwater intrusion, level set method, Henry problem, coastal aquifers, interface tracking, density-dependent groundwater flow.Abstract
Coastal intrusion of salt water into freshwater aquifers is a major threat to the freshwater security in the world. This paper is a critical review of the level set technique as applied in monitoring and modeling the freshwater-saltwater interface during the coastal aquifer system, based on the case of Henry problem. Combined with high-order numerical discretization, and with a suitable reinitialisation approach, level set formulations have demonstrated the ability to accurately solve interface dynamics and achieve better geometric flexibility than traditional modeling methods. Nevertheless, there remain formidable mathematical problems such as numerical diffusion that affects the sharpness of the interface, inefficient maintenance of mass balance over long simulations and computational inefficiencies, especially in the three-dimensional and long-term modeling cases. The study suggests the hybrid methodological frameworks to help eliminate these limitations by using a combination of level set tracking with the volume-of-fluid corrections to improve mass conservation and make it more applicable to real-life field studies.
References
Thomas A, Eldho T, Rastogi A. Simulation of seawater intrusion in coastal confined aquifer using a point collocation method based meshfree model. J Water Resour Prot. 2016;8(4):534–49. DOI: https://doi.org/10.4236/jwarp.2016.84045
Ségol G, Pinder G, Gray W. A Galerkin-finite element technique for calculating the transient position of the saltwater front. Water Resour Res. 1975;11(2):343–7. DOI: https://doi.org/10.1029/WR011i002p00343
Simpson M, Clement T. Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resour Res. 2004;40(1). DOI: https://doi.org/10.1029/2003WR002199
Croucher A, O'Sullivan M. The Henry problem for saltwater intrusion. Water Resour Res. 1995;31(7):1809–14. DOI: https://doi.org/10.1029/95WR00431
Narkbuakaew W, Nagahashi H, Aoki K, Kubota Y. An efficient liver-segmentation system based on a level-set method and consequent processes. J Biomed Sci Eng. 2014;7(12):994–1004. DOI: https://doi.org/10.4236/jbise.2014.712097
Zhu J, Sethian J. Projection methods coupled to level set interface techniques. J Comput Phys. 1992;102(1):128–38. DOI: https://doi.org/10.1016/S0021-9991(05)80011-7
Bear J, Verruijt A. Modeling groundwater flow and pollution. Dordrecht: Springer; 1987. DOI: https://doi.org/10.1007/978-94-009-3379-8
Anderson M. Unsteady groundwater flow beneath strip oceanic islands. Water Resour Res. 1976;12(4):640–4. DOI: https://doi.org/10.1029/WR012i004p00640
Henry H. Salt intrusion into fresh-water aquifers. J Geophys Res Atmos. 1959;64(11):1911–9. DOI: https://doi.org/10.1029/JZ064i011p01911
Sethian J, Smereka P. Level set methods for fluid interfaces. Annu Rev Fluid Mech. 2003;35(1):341–72. DOI: https://doi.org/10.1146/annurev.fluid.35.101101.161105
Mualem Y, Bear J. The shape of the interface in steady flow in a stratified aquifer. Water Resour Res. 1974;10(6):1207–15. DOI: https://doi.org/10.1029/WR010i006p01207
Garzon M, Gray L, Sethian J. Numerical simulation of non-viscous liquid pinch-off using a coupled level set-boundary integral method. J Comput Phys. 2009;228(17):6079–106. DOI: https://doi.org/10.1016/j.jcp.2009.04.048
Cooper H. A hypothesis concerning the dynamic balance of fresh water and salt water in a coastal aquifer. J Geophys Res Atmos. 1959;64(4):461–7. DOI: https://doi.org/10.1029/JZ064i004p00461
Abarca E, Carrera J, Sánchez-Vila X, Dentz M. Anisotropic dispersive Henry problem. Adv Water Resour. 2007;30(4):913–26. DOI: https://doi.org/10.1016/j.advwatres.2006.08.005
Huyakorn P, Andersen P, Mercer J, White H. Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resour Res. 1987;23(2):293–312. DOI: https://doi.org/10.1029/WR023i002p00293
Werner A, Bakker M, Post V, Vandenbohede A, Lu C, Ataie-Ashtiani B, et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour. 2013;51:3–26. DOI: https://doi.org/10.1016/j.advwatres.2012.03.004
Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys. 1988;79(1):12–49. DOI: https://doi.org/10.1016/0021-9991(88)90002-2
Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys. 1994;114(1):146–59. DOI: https://doi.org/10.1006/jcph.1994.1155
Peng D, Merriman B, Osher S, Zhao H, Kang M. A PDE-based fast local level set method. J Comput Phys. 1999;155(2):410–38. DOI: https://doi.org/10.1006/jcph.1999.6345
Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys. 2000;162(2):301–37. DOI: https://doi.org/10.1006/jcph.2000.6537
Enright D, Fedkiw R, Ferziger J, Mitchell I. A hybrid particle level set method for improved interface capturing. J Comput Phys. 2002;183(1):83–116. DOI: https://doi.org/10.1006/jcph.2002.7166
Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys. 2009;228(16):5838–66. DOI: https://doi.org/10.1016/j.jcp.2009.04.042
Datta-Gupta A, King MJ. Streamline simulation: theory and practice. Richardson (TX): Society of Petroleum Engineers; 2007. DOI: https://doi.org/10.2118/9781555631116
Garming JF, Blum P, Kooi H. A global synthesis of sea-water intrusion vulnerability indicators. Adv Water Resour. 2019;133:103447.
Loua-Bouayi JM, Tathy C, Manounou AK. Modeling of the saltwater intrusion using the level set method: application to Henry’s problem. Comput Water Energy Environ Eng. 2022; 11:11–33. doi:10.4236/cweee.2022.111002. DOI: https://doi.org/10.4236/cweee.2022.111002
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Academic International Journal of Engineering Science

This work is licensed under a Creative Commons Attribution 4.0 International License.


